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Examination of Wave Speed in Rotating Detonation Engines 
Using Simplified Computational Fluid Dynamics 

 
Daniel E. Paxson 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
A simplified, two-dimensional, computational fluid dynamic (CFD) simulation, with a reactive Euler 

solver is used to examine possible causes for the low detonation wave propagation speeds that are 
consistently observed in air breathing rotating detonation engine (RDE) experiments. Intense, small-scale 
turbulence is proposed as the primary mechanism. While the solver cannot model this turbulence, it can 
be used to examine the most likely, and profound effect of turbulence. That is a substantial enlargement 
of the reaction zone, or equivalently, an effective reduction in the chemical reaction rate. It is 
demonstrated that in the unique flowfield of the RDE, a reduction in reaction rate leads to a reduction in 
the detonation speed. A subsequent test of reduced reaction rate in a purely one-dimensional pulsed 
detonation engine (PDE) flowfield yields no reduction in wave speed. The reasons for this are explained. 
The impact of reduced wave speed on RDE performance is then examined, and found to be minimal. Two 
other potential mechanisms are briefly examined. These are heat transfer, and reactive mixture non-
uniformity. In the context of the simulation used for this study, both mechanisms are shown to have 
negligible effect on either wave speed or performance. 

Nomenclature 

a non-dimensional speed of sound 
a* reference speed of sound 
a/f air-to-fuel ratio 
CEA  Chemical Equilibrium with Applications 
CFD  computational fluid dynamic 
CJ  Chapman-Jouguet 
CPG calorically perfect gas 
e non-dimensional entropy 
hf fuel lower heating value  
Ispg gross specific impulse 
K0 non-dimensional rate constant 
l RDE circumference or PDE length 
M Mach number 
p non-dimensional pressure 
p* reference pressure  
p1 non-dimensional pressure upstream of detonation  
pamb ambient pressure 
PDE pulsed detonation engine 
pman manifold pressure 
RDE  rotating detonation engine 
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Rg real gas constant 
T non-dimensional temperature  
T* reference temperature 
T1 temperature upstream of detonation  
Tman manifold temperature 
u non-dimensional circumferential velocity 
v non-dimensional axial velocity 
x circumferential RDE distance or axial PDE distance 
y axial RDE distance 
z reactant mass fraction 
ZND Zeldovich-von Neumann-Doring 
γ ratio of specific heats 
ρ non-dimensional density 
ρ* reference density 

1.0 Introduction 
The rotating detonation engine (RDE) is currently under investigation as an approach to achieving 

pressure gain combustion for propulsion and power systems, in a compact device. The RDE essentially 
consists of an annulus with one end open (or having a throat and/or nozzle) and the other end valved 
(typically using non-mechanical, fluidic means to promote through flow and prevent backflow). Fuel and 
oxidizer enter axially through the valved end. The detonation travels circumferentially. Combustion 
products exit predominantly axially through the open end. The majority of the fluid entering the device is 
passed over by the rotating detonation wave which, as a form of confined heat release, substantially raises 
the pressure and temperature. The fluid is then expanded and accelerated as it travels down the annulus. 
Ideally, the flow exiting the device has a higher average total pressure than the flow that enters (Ref. 1). 
The pressure gain of an RDE can be utilized to produce thrust directly, or it can be expanded through a 
turbine to produce additional useful work when compared to that from conventional combustors which 
incur a pressure loss when operating at the same inlet conditions and fuel flow rate.  

Details of basic RDE operation may be found in numerous publications (e.g., Refs. 2 to 4), and will 
not be presented in this work. Suffice it to say, the fluid mechanics associated with RDE’s are complex. 
This is particularly so when they are compared against those in pulse detonation engines (PDE’s) (Ref. 5). 
The fill, detonation, and expansion portions of RDE cycles are highly coupled, and there is no canonical 
equivalent to the PDE’s ‘single-shot’ operation which, in a sense, decouples portions of the operating 
cycle. The fact that the detonation is essentially propagating through a cross-flow also complicates the 
RDE flowfield. Furthermore, instrumentation of laboratory rigs to a level sufficient for ascertaining fluid 
phenomena is extraordinarily difficult due to the harsh environment and short time scales (Ref. 6). The 
end result of these complexities is that there are numerous unknowns concerning both the processes 
taking place inside an RDE, and the performance implications thereof. 

This paper focuses on just one of these unknowns, namely, the observation that most measurements 
of detonation wave speed made in air breathing RDE’s fall well below (i.e., as much as 40 percent below) 
those predicted by classical one-dimensional theory (a.k.a. the Chapman-Jouguet or CJ condition) 
(Refs. 7 and 8). Adding to this vexing oddity is the fact that most computational fluid dynamic (CFD) 
simulations of RDE’s show much smaller, or even no deficits (Ref. 8). This is unique to the RDE 
flowfield. Nearly all PDE studies, both numerical and experimental, show wave speeds very close to the 
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so-called CJ speed (i.e., within 10 percent). In fact, the attainment of the CJ speed is often used as a 
benchmark for having achieved detonation in laboratory PDE experiments (e.g., Ref. 9). 

In the present work, it is proposed that the intense, and likely very small scale turbulence, together 
with multiple sources of vorticity production associated with the RDE flowfield may be radically 
enlarging the reaction zone behind the leading shock of the detonation. This proposition is based on the 
experimentally validated three-dimensional, direct numerical simulation (DNS) and large eddy simulation 
(LES) work of References 10 to 13, all of which investigated detonations in tubes. Such planar 
detonations are typically well described by the one-dimensional Zeldovich-von Neumann-Doring (ZND) 
model (a shock followed by very thin constant area reaction zone) (Ref. 14). It is well-known however, 
that their structure is multi-dimensional. References 10 and 11 demonstrated that turbulence can 
substantially alter the otherwise regular, multi-dimensional, cellular structure of detonations. References 
12 and 13 showed that, even without turbulence in the undetonated region, many detonable mixtures can 
develop highly irregular, nearly stochastic detonation cell structures, whereby local detonation failures 
occur, but where the reaction still completes via turbulent deflagration. Under these scenarios, both works 
showed that if the entire post-shock zone where reactions are occurring (i.e., where heat release takes 
place) is averaged in order to recover a one-dimensional model of the planar wave, the result is effectively 
a massive enlargement of the reaction zone compared to what a ZND model would yield. This is the 
phenomenological equivalent of reducing the reaction rate constant in a finite rate chemical reaction 
model from typical rates associated with a given homogeneous reacting fluid mixture. It is from this 
equivalence that the present work originates.  

A simplified, CFD based simulation for RDE analysis and design has been developed, validated, and 
detailed in the literature (Refs. 15 to 19). A brief description will be provided in Section 2.0. By design, 
the simulation cannot possibly capture the physics which give rise to the reaction zone enlargement just 
described. However, it can shed light on the flowfield response to such an enlargement. In particular, the 
response of the detonation speed, the peak temperatures within the RDE annulus, and the specific impulse 
can and will be examined. It will be shown that reaction zone enlargement reduces detonation speed, and 
peak temperatures (consistent with experimental results) (Ref. 20), but has little effect on specific 
impulse. This analysis will be preceded by one showing that reaction zone enlargement has no effect on 
detonation speed in purely one-dimensional, PDE-like flowfields. This is also consistent with experiments 
and suggests that even in PDE’s with high turbulence levels, and small turbulence scales, a wave speed 
deficit is unlikely. For completeness, two other potential wave speed altering phenomena will be briefly 
examined in the context of the simulation: heat transfer, and fuel/air mixture variations. Both will be 
shown to have little effect. 

2.0 Simulation Description 
The basis of the simulation is a high resolution, algorithm that integrates the quasi-two-dimensional, 

two-species, reactive Euler equations with source terms. One dimension represents the azimuthal 
direction of the RDE annulus; the other represents the axial direction. This assumes an inner to outer 
diameter ratio close to one. The code adopts the detonation frame of reference and deliberately utilizes a 
coarse grid (i.e., adds a degree of numerical diffusion) in order to eliminate the highest frequency 
unsteadiness (e.g., detonation cells, Kelvin-Helmholtz phenomena, etc.). The result is a flowfield solution 
that is invariant with time when converged. The working fluid is assumed to be a single, calorically 
perfect, premixed gas with only two species: reactant or product. For all results to be shown, the pre-
mixture is hydrogen and air. The relevant parameters are: a specific heat ratio, γ=1.264; a real gas 
constant, Rg=73.92 ft-lbf/lbm/R; and a fuel heating value, hf =51,571 Btu/lbm. 
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The source terms contain sub-models that govern the reaction rate, momentum losses due to skin-
friction, and the effects of heat transfer to the walls. Unless otherwise mentioned, skin friction and heat 
transfer will be neglected in this work. The reaction rate sub-model is one which is proportional to the 
product of the rate constant, K0, the density, ρ, and the reactant mass fraction, z. Although this form lacks 
an Arrhenius-type exponential for temperature dependence, it does utilize a user defined threshold 
temperature, below which the reaction is not allowed to proceed. For all of the results to be shown, the 
threshold temperature is specified as 2.5 times the reference temperature. A simple reaction model of this 
type precludes capturing the cellular detonation structure, or the “galloping” (i.e., pulsating) planar 
detonation phenomenon necessary for its development (Ref. 21). Nevertheless, it captures effects within 
the flowfield that are germane to this study. 

The governing equations are integrated numerically in time using an explicit, second-order, two-step, 
Runge-Kutta technique. Spatial flux derivatives are approximated as flux differences, with the fluxes at 
the discrete cell faces evaluated using Roe’s approximate Riemann solver. Second-order spatial accuracy 
(away from discontinuities) is obtained using piecewise linear representation of the primitive variable 
states within the cells (MUSCL). Oscillatory behavior is avoided by limiting the linear slopes. 

The simulation is implemented non-dimensionally. The non-dimensional pressure, p, density, ρ, 
temperature, T, and velocities, u and v are obtained by normalizing to a reference state p*=14.7 psia, 
ρ*=0.055 lbm/ft3, T*=520 R, and the corresponding sound speed, a*=1250 ft/s. The azimuthal and axial 
directions, x and y are non-dimensionalized by the circumference, l. The time, t, is non-dimensionalized 
using the reference wave transit time, l/a*. The wave transit time is also used to normalize the reaction 
rate constant. Unless stated otherwise, all quantities displayed or discussed henceforth are non-
dimensional. For reference, it is noted that this formulation results in an equation of state that is as 
follows. 

 p = ρT (1) 

The speed of sound becomes simply 

 Ta =  (2) 

3.0 Reaction Rate Effects in a One-Dimensional Tube 
Before proceeding to the RDE environment, it is instructive to examine the simpler but related 

environment of the PDE. As mentioned in the introduction, PDE’s do not generally exhibit wave speed 
deficits. The objective here is to examine whether the supposition of reduced reaction rate posited in this 
paper has an effect on their numerically simulated speed. To this end, a strictly one-dimensional version 
of the CFD code described above has been developed. It uses precisely the same interior numerical, and 
boundary algorithms, but operates on the one-dimensional version of the Euler equations. There are 2,000 
numerical cells in the computing space, with an associated time step of 7.0×10-5. The length scale used to 
non-dimensionalize is the tube length. Flow is from left to right (in the detonation frame of reference). 
The tube is open to ambient pressure on the right end. A stoichiometric mixture of hydrogen and air 
(a/f=34.3), at the reference temperature and pressure is fed into the left end at the analytical detonation 
Mach number, M=5.47. The initial conditions in the tube are such that the left and right halves are set the 
values shown in Table I. The right values represent the analytical post-reaction, or so called CJ state 
(Ref. 7). The simulation is then run sufficiently long such that all transient events are convected out of the 
computing space. The inflow Mach number is then adjusted manually, and the code is rerun, until the  
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TABLE I.—PDE TUBE INITIAL CONDITIONS 
Variable Left Right 

p 1 17.16 

T 1 9.83 

u 5.47 3.13 
z 1 0 

 

 
Figure 1.—Computed one-dimensional distributions of pressure, temperature, 

Mach number, and reactant fraction as functions of distance, in the vicinity of 
the reaction, for two values of the reaction rate constant. 

 
detonation becomes stationary (i.e., the solution becomes time independent). The exit conditions are of no 
consequence at this point since the flow is by definition sonic at the completion of the reaction. It is noted 
that the boundary condition routines of the simulation are formulated to detect this situation when it 
occurs and to essentially neglect the imposed pressure (Ref. 15). Simulation results from following the 
above procedure, for two values of the rate constant, are shown in Figure 1. The two rate constants differ 
by an order of magnitude. For K0=300 (dashed) and 3000 (solid), distributions of pressure, temperature, 
Mach number, and reactant fraction are plotted as functions of axial distance in the vicinity of the 
reaction.  

It is seen that both simulations match all of the analytical detonation parameters correctly, including 
the leading shock pressure ratio of 33.3. The only difference is that the reaction zone (where 0 < z < 1) is 
much larger for the lower rate constant. Note in particular that, in this one-dimensional case, the 
detonation speed is unchanged by the change in reaction rate. This makes physical sense if one considers 
the process of heat addition at constant cross-sectional area (the basis of the ZND model). Distributing the 
heat addition over a longer length changes nothing since the fluid is confined by the same shock on one 
side, and a sonic condition on the other. In fact, it can be shown (though it is not done in this work) that if 
the length scale in the Figure 1 profiles is changed from the tube length to the so-called reaction half-
width (the distance from wherever the reaction commences to where half of the reactant mass fraction has 
been consumed), the K0=300 and 3000 profiles are identical (Ref. 21). Not surprisingly then, the high 
fidelity numerical schemes of References 12 and 13, along with countless PDE experiments show that in 
tubes (i.e., planar detonations), as long as detonations are achieved, they travel at the CJ speed (Ref. 22). 

It should be noted that the distributions in Figure 1 do not show the familiar induction zone which 
normally exists between the leading shock and the commencement of the reaction (Ref. 13). A simple 
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reaction scheme such as the one used here cannot capture this zone; however, its absence does not 
fundamentally change the results.  

4.0 Reaction Rate Effects in an Idealized RDE 
Consideration is now turned to the case of the idealized RDE. This is an RDE which has no viscous 

losses or heat transfer effects. A premixed fuel and air combination is admitted isentropically from a 
manifold, through the inlet end, as long as the pressure just inside the RDE is below the manifold 
pressure. Where the pressure just inside the RDE is above the manifold pressure (i.e., immediately behind 
and some distance aft of the detonation), backflow into the inlet is prevented by a notional valve that 
closes instantaneously (Ref. 15). The azimuthal component of the velocity at the inlet is prescribed. It 
represents the detonation velocity, which is unknown. As such, an iterative process must be followed as 
described in Reference 15 whereby the prescribed velocity is altered until the computational domain 
becomes time invariant. As in the previous example, a stoichiometric mixture of gaseous hydrogen and 
air is used. Unlike the previous example, there is no uniform state of the flow upstream of the detonation 
that can be stated as the initial condition. The only uniform state which can be assumed is the inlet 
manifold which is held at a temperature and a pressure of Tman= 536 R, and pman= 8 Atm., respectively. 
The exit static pressure boundary condition is pamb= 1 Atm. Symmetry boundary conditions are imposed 
on the left and right vertical faces of the grid in order to duplicate the continuous nature of the RDE 
annulus. The grid used has 400 cells in the azimuthal direction, x, and 80 cells in the axial direction, y. 
The non-dimensional time step is 5.0×10-5. 

This grid spacing is considerably coarser than that used for the one-dimensional tube simulations. 
Two-dimensional CFD solutions require substantially more computational resources than the one-
dimensional variety, and each increment of grid refinement compounds the resource requirements 
exponentially (e.g., halving the grid spacing quadruples the number of numerical cells, and doubles the 
number of times steps required to simulate a given period). The grid spacing used represents a 
compromise, chosen in order to complete all the computations required for this work in a timely manner 
and still show appropriate trends from varying the reaction rate constant.  

Figure 2 shows the stationary simulation solution for the RDE described in the form of temperature 
contours using a reaction rate constant of K0=780. Also shown in the figure are distributions of axial 
Mach number (My) and normalized pressure at the inlet (bottom) and exit (top) planes. Although this 
notional RDE is axially shorter than most presented in the literature, it is clear from the exit plane 
distribution that the flow has become sonic or supersonic all along the plane and cannot expand further 
within the annulus. As such, and as shown in Reference 15, adding axial length at constant cross section 
will not improve thrust. 

It is noted that the reaction rate constant chosen here is the largest value possible in the present 
simulation for this grid spacing. Values higher than this result in nearly all of the reaction occurring in 
only a few numerical cells. This in turn leads to extreme gradients and either non-physical solutions, or 
numerical instability. 

The Figure 2 temperature contour also shows a shear region between fresh charge and burned gas 
where a small amount of deflagrative combustion takes place. This region is a naturally occurring part of 
virtually all RDE cycles. Control of its extent in the context of the present simulation is discussed in 
Reference 15. For all of the results to be presented it was controlled to maintain a constant detonation 
height (h in Figure 2). 
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Figure 2.—Computed contours of normalized temperature throughout the 

annulus of the idealized RDE, in the detonation frame of reference. 
Axial Mach number and pressure distributions are also shown at the 
inlet and exit plane at the bottom and top of the figure, respectively. 

 
Three streamlines are traced on the temperature contour of Figure 2 (white lines). These follow a 

particle as it enters the RDE, passes through the detonation, and exits. In order to compare results with 
Figure 1, the fluid states and Mach numbers along the center streamline, s, are shown in Figure 3. Figure 
3(a) corresponds to the Figure 2 flowfield. Figure 3(b) corresponds to the Figure 2 geometry, parameters, 
and boundary conditions, but with K0 reduced by a factor of 6 to 130. No temperature contour is shown 
for this simulation as it is virtually indistinguishable from Figure 2. The pressures and temperatures in 
these plots are normalized by the respective values just in front of the detonation (i.e., the white number 1, 
in the contour plot of Figure 2). Since the RDE flowfield is two-dimensional, both the axial and 
circumferential (Mx) components of Mach number are shown. Also shown are the pressure ratio, 
temperature ratio, and the shock Mach number corresponding to the theoretical one-dimensional CJ 
values. Comparing the (a) and (b) plots of this figure to that of Figure 1 yields some significant contrasts. 

Both Figure 3(a) and (b) yield shock Mach numbers (i.e., 22
yx MM + ) below the analytical CJ value. 

However, the Mach number corresponding to the high reaction rate constant simulation (Figure 3(a)) is 
just 4 percent below, whereas that the lower reaction rate constant is 18 percent below. The peak 
pressures shown in both plots of Figure 3 are lower than that of Figure 1. This is partly due to an artifact 
of the coarser grid used for the RDE simulations which, in combination with a reaction model without an 
induction zone, can miss the shock peak (Ref. 23). Although the results are not shown here, when the one 
dimensional model is run for the Figure 1 test problem using the RDE simulation grid spacing and 
reaction rate, lower peak pressures are observed; however, the detonation speed remains the same, as does 
the post-reaction CJ state. 

Examination of the streamlines in Figure 2 suggests at least a partial explanation for the detonation 
wave speed variations shown in Figure 3. It is clear that the streamlines diverge after passing through the 
leading shock. This implies that heat addition no longer takes place at constant area as in the planar 
detonation case (where streamlines cannot diverge by definition). The lower the reaction rate, the more 
area change can occur. The area change, and in particular the enlargement allows greater expansion with 
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heat addition. This leads to a kind of reduced confinement which lowers the peak temperature, and post-
reaction pressure, which in turn reduces the leading shock strength (i.e., detonation) speed.  

A low order, essentially algebraic analysis of the so called lateral detonation area relief effect is 
presented in Reference 24. Using some simplifying assumptions on a quasi-one-dimensional control 
volume that encompasses the leading shock and the entirety of the reaction zone, the analysis yields a 
reduction in shock speed if the area increases in the direction of flow. However, the analysis simply 
assumes area change, and does not explain how it might come about. The present results provide a kind of 
mechanism with the notion of a lower effective heat release rate and diverging streamlines. 

It is noted that the Reference 24 work requires somewhat larger changes in area than those observed 
here in order to achieve the same reductions in detonation speed. This may be due to simplifications 
and/or assumptions of the low order model. For example, the Reference 24 model assumes that, like the 
one dimensional detonation, the Mach number of the fluid in the detonation frame of reference is 1 just as 
the reaction completes. This is nearly true in Figure 3(a) where K0=780 (see the values of Mx and My at 
s≈0.31 when z=0). However, in Figure 3(b) where K0=130, the Mach number when z reaches 0 is seen to 
be approximately 1.6. 

 
 

 
Figure 3.—Computed distributions of pressure, temperature, axial and 

circumferential Mach number, and reactant fraction as functions of distance 
along the Figure 2 center streamline, for two values of the reaction rate 
constant: (a) K0=780; (b) K0=130. 
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It is interesting to note the quite different working fluid states in Figure 3(a) versus Figure 3(b) at the 
point that the reaction completes. At first glance, it might be suspected that the availability for work or 
thrust production might be quite different as well. However, if the entropies along the respective center 
streamlines are examined, as shown in Figure 4, it is seen that the increase associated with different shock 
strengths, heat addition rates, and streamtube area changes, are the same. As such, it should be expected 
that the thrust capability of both simulations are quite similar. In this figure, the entropy is relative to the 
reference state and is written as follows. 

 ( ) ( )pTe lnln
1

−
−

=
γ

γ
 (3) 

 
That thrust capability is largely unchanged is illustrated in Figure 5. Here, the detonation 

circumferential Mach number (i.e., the component that could be measured in a laboratory experiment) and 
computed gross specific impulse are shown as functions of the reaction rate constant for the Figure 2 
RDE configuration. The detonation Mach number is shown as a percentage of the one-dimensional CJ 
value. It is seen that the higher the reaction rate value used, the closer to the CJ value the detonation 
approaches. The minimum rate constant is limited in the simulation. Below a certain value (likely 
dependent on grid resolution and prescribed threshold temperature) the detonative structure fails. Since 
this paper is focused on a trend rather than a limit, and since the simplified computational model used 
here is not appropriate for establishing actual limits, a systematic exploration of the minimum rate 
constant was not pursued. Still, it is interesting to note that speeds which have been observed in 
experiments are shown in this figure. It is also interesting to observe that, as with the Reference 24 
results, lower detonation speed has almost no impact on performance as measured by specific impulse. 
The exception to this latter observation is the lowest reaction rate result, which shows an approximately 
5 percent reduction in specific impulse. One reason for this reduction may be that the reaction is so slow 
that not all of the fuel is consumed. An examination of this simulation at the exit plane revealed that 
approximately 7 percent of the outgoing flow was unreacted. Whether or not something like this actually 
occurs in some laboratory RDE’s is an open question, but it is not an unreasonable supposition.  

 
 

 
Figure 4.—Computed distributions of entropy as functions of 

distance along the Figure 2 center streamline, for two values of 
the reaction rate constant. 
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Figure 5.—Computed detonation speed and gross 

specific impulse as functions of reaction rate 
constant in the idealized RDE of Figure 2. 

4.1 Corroborating Experimental Results 

The observation of reduced peak temperatures (Figure 2) accompanying the reduced wave speeds 
calculated by the reduced reaction rate model provides an opportunity for limited corroboration with 
experimental results. Time resolved, line-of-sight measurements of temperature were made across the 
channel of an optically accessible laboratory RDE using water absorption spectroscopy in 2017 (Ref. 20). 
The hydrogen/air RDE was nearly identical to one used in 2015 to obtain detailed time-averaged pressure 
and thrust measurements (Ref. 6). The thrust and pressure results were also compared with predictions 
from the RDE simulation used in the present work (with all sub-models for non-ideal flow active). The 
comparison was quite favorable. Besides matching thrust and multiple time-averaged pressures, the mass 
flow rate, and the detonation wave speed matched well too. As such, an additional comparison was made 
in 2017 between the measured and computed temperatures. 

Figure 6 shows the measured temperature at three axial locations over the course of 10 revolutions of 
the detonation. These 10 cycles were phase-locked based on a rising-edge temperature threshold. They 
were then ensemble-averaged to produce a single-cycle representative temperature profile for each 
location.  

The computed flowfield for this RDE is shown in Figure 7 in the form of temperature contours. Some 
of the modelled non-ideal phenomena are labeled in the figure. Others are discussed in Reference 6. Note 
that Figure 7 is in the detonation frame of reference, but it is a simple matter to convert to time in the 
laboratory frame by dividing each circumferential location by the detonation speed used to obtain the 
stationary solution. The three horizontal white lines in Figure 7 represent the axial locations where the 
measurements were made. 

Computed and ensemble-averaged measured temperatures are shown in Figure 8 at the three axial 
locations. Also shown is the theoretical temperature at the one dimensional CJ point as calculated by the 
Chemical Equilibrium with Applications (CEA) code (Ref. 25) and using the calorically perfect gas 
(CPG) assumption of the present simulation. 

Given the uncertainties in the experimental approach (e.g., it was not validated in a detonative 
flowfield where the temperatures are known), and the stated simplifications of the simulation, the 
agreement is quite good. The computed and measured profiles have similar shapes, and the peak values 
compare favorably. Important to this paper is the observation that the peaks are well below the CJ value, 
just as the low effective reaction rate proposition predicts. It is noted that the legend of Figure 8 shows an 
experimental trace at 0.25 in., and a computed trace at 0.32 in. downstream from the head end. This 
computational location represents the closest numerical grid point to the measurement location. 
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Figure 6.—Measured temperature in an RDE at three axial locations 

over the course of 10 rotations of the detonations. 
 

 
Figure 7.—Computed temperature contours for the experimental RDE of 

References 5 and 19. The three axial measurement locations of 
Reference 19 are shown as white lines. 

 

 
Figure 8.—Computed and Measured temperature in an RDE at three axial locations. 

Legend abbreviations: ex. = experimentally measured; co. = computed. 
 
Many of the disparities between measurement and computation can be at least qualitatively attributed 

to modeling simplifications. For example, it is noted that the peak values and shapes of the computed and 
measured traces are quite different between 0 and 0.1 msec. for the 2.25 in. axial location. Figure 7 shows 
that this location is one of the most fluidically complex, passing through the oblique shock, and two gas 
interfaces. The location of this oblique shock and the extent of the purge region defining the location of 
the interfaces are both controlled by input parameters of the simulation. As such, changes in those 
parameters can greatly modify the nature of the computed trace. Furthermore, the entire contour seen in 
Figure 7 can essentially be shifted axially by the user specified mixing delay. This is relevant since, 
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although not shown, a temperature trace taken at the 1.9 in. axial position of Figure 7 showed only a 
single peak at 0.07 msec. with a value of 1720 K. 

The shape disparity of measured and computed traces between 0 and 0.1 msec. at the 0.25 in. axial 
location may also be explained somewhat by the specified mixing delay. If the mixing delay were longer (or 
there was less backflow), the cooler, unburned flow would replace the hot flow that passes the measurement 
location between 0.3<x<0.5 seen in Figure 7 (corresponding to 0.04<t<0.09 msec. in Figure 8). 

It is noted in closing this section that none of the disparities described (and potentially explained) 
above pertains to the trace at the axial location of 1.25 in. This location is critical as it is seen in Figure 7 
to pass directly through the reaction region. The peak temperature is determined solely by the heat 
release. The fact that this trace is also the one with the best match between code and experiment 
somewhat bolsters the argument that the latter corroborates the former. 

5.0 Other Contributing Factors 
To be fair, there are alternative ideas to explain the low wave speeds and/or measured peak 

temperatures. Two of the more prominent will be considered below.  

5.1 Heat Transfer 

One obvious possibility is heat tranfer. RDE’s typically have higher surface to volume factors than 
PDE’s. It stands to reason that heat transferred to the wall will manifest itself as an effective loss in fuel 
heating value, particularly for the short duration, heat-soak, cold-wall operation that typifies most RDE 
experiments. A lower heating value should lower both wave speed and peak temperature. 

The simulation used here has a heat transfer sub-model that has produced reasonable agreement with 
experimental heat flux measurements (which can span an astonishing 6 orders of magnitude over the 
course of a particle path through the RDE) (Ref. 17). 

The Figure 2 RDE configuration with K0=780 was run with and without this sub-model activated. 
Note that the heat transfer sub-model requires dimensional knowledge of the RDE (channel width, mean 
diameter, axial length), as well as fluid properties (viscosity, Prandtl Number, etc.). Values consistent 
with the experiment on which the model was validated were used. It was found that the detonation wave 
speed was lowered by less than 1 percent and the peak temperature along the s streamline of Figure 2 was 
lowered by 0.4 percent. This is considered negligible. In the context of the present simulation then, heat 
transfer is not a significant contributor to the phenomena of interest.  

5.2 Non-Uniform Mixtures 

Computational RDE models that show the greatest detonation wave speed deficits (i.e., closer to 
values measured in the laboratory) tend to attribute them to fuel and air mixing phenomena (Refs. 26 and 
27). While there is undoubtedly a mixing effect, it is interesting to note that some of the largest measured 
deficits occur in premixed experiments (Ref. 8). These two observations may not actually be at odds. The 
computational models, while considerably more sophisticated (and of higher resolution) than the one used 
in this study, still may not be able to capture the details of the flowfield that lead to the reaction zone 
enlargement shown in References 10 and 13. Thus, they are unlikely to produce wave speed reductions in 
a premixed computation using chemistry based rate constants. However, if those same models are used to 
simulate the more typical non-premixed RDE’s where the fuel and air are injected separately, then it is 
possible that variations in air/fuel ratio may lead to variations in burning rate and yield the same reaction 
zone enlargement effect that is posited here. 
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Given the inviscid, and premixed nature of the simulation used here, the only issue that can be 
addressed is whether variation in the reactant air/fuel ratio (i.e., variations in z) affect the computed wave 
speed. Furthermore, since the simulation cannot accommodate rich mixtures, only variations from lean to 
stoichiometric can be examined. Despite these limitations however, the exercise is a valuable one since, 
as will be shown, the outcome further strengthens the reduced reaction rate mechanism for low wave 
speed posited here. 

Only the largest possible variation in air/fuel ratio will be examined. In particular, both PDE and RDE 
flowfields will be considered where the value of z entering the devices varies between 0 and 1. The 
variation will be spatial and temporal for the PDE, and only spatial for the RDE. The degree of z variation 
means that portions of the flowfield can potentially sustain a stoichiometric detonation front, while others 
cannot sustain a detonation of any kind because there is no reactant present. The goals are to examine 
resulting numerical solution to see if some sort of stationary, conglomerate wave structure results, and if 
so to see how its propagation speed compares to a detonation propagating through a flow of uniform z 
equal to the average of the varying z flow. Ideally, the z variation would be random, since this is likely to 
more closely resemble the real world. In this work however, a regular (i.e., periodic) variation is used due 
to ease of implementation. It is expected, though it is not proved, that results are the same. 

5.2.1 PDE 
Consider the same basic PDE tube arrangement used in Figure 1, except the reactant mass fraction 

introduced in the inlet is z=0.5. This corresponds to specifying an equivalence ratio of 0.493. According 
to one dimensional theory, this should lead to a stationary solution when the incoming velocity u=3.99 
(note that this is also the Mach number based on the non-dimensionalization scheme and reference state 
used here). The CJ point, when the reaction is complete should yield p=9.33, T=5.47, M=1.0, z=0. A one-
dimensional simulation similar to that used for Figure 1 confirms these values. The simulation used 400 
numerical cells, and a reaction rate constant of K0=200. Results are not shown since they differ from those 
of Figure 1 only in magnitude. 

The two-dimensional simulation was then configured to emulate a PDE tube. Wall boundary 
conditions were specified for y=0.0, and y=0.2. Supersonic inflow conditions were specified at x=0.0. 
Constant pressure boundary conditions were applied at x=1.0. A 400 by 80 cell grid was used, just as that 
for Figure 2. The specified value of z at x=0.0 was varied between 0.0 and 1.0 in a sinusoidal manner 
from 0.0<y<0.2. The wavelength was 0.05. The value of z was also varied temporally following a 
sinusoidal pattern. The mean value of z at x=0.0, from 0.0<y<0.2 was always 0.5. The simulation was 
initiated in a similar manner to the one dimensional version described earlier. After initiation, it was run, 
and the inflow velocity was adjusted until the resulting detonation was stationary. The solution, at a 
moment in time, is shown in Figure 9 in the form of contours of z, Log(p), T, and Mx. The inflow velocity 
required to maintain a stationary (albeit wavey) detonation front was u=4.00. This is nearly identical to 
the theoretical value (u=3.99) for a uniform flow at z=0.5. Similarly, the post-reactive, mass-averaged 
pressure and temperature are 9.84 and 5.53, respectively. The variation in z can be seen in the upper left 
of the figure. These results indicate that for the confined PDE tube environment, and in the context of this 
simplified simulation, even gross non-uniformities in the mixture reactant fraction yield a stable 
detonation-like wave which propagates at the same speed as the uniform z detonation. 

It is noted in passing that the distortion of hot and cold pockets seen in the temperature contour results 
from Kelvin-Helmholtz instabilities that arise from shearing. This is an inviscid phenomenon, and should 
occur in a properly formulated simulation. Thus, its observation gives a kind of indirect confidence in the 
present code. The subsequent dissipation of the distortions is numerical, and results from the coarseness 
of the grid. 
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Figure 9.—Computed contours of normalized reactant fraction, Log(p), temperature, 

and Mach number throughout a two-dimensional PDE tube simulation. 
 
 

5.2.2 RDE  
A similar reactant fraction variation was simulated with the ideal RDE configuration of Figure 2. A 

stationary solution was found for a uniform reactant fraction of z=0.5 at the inlet (i.e., y=0.0). A value of 
K0=260 was used. The imposed detonation speed required to obtain the stationary solution was u=3.50. 
This is 87 percent of the one-dimensional detonation speed, which is consistent with Figure 5. Contours 
of z and T are shown in Figure 10(a) for this simulation. 

The same simulation was then run with a sinusoidally imposed variation 0.0<z<1.0, where the 
average was z=0.5. The wavelength was 0.1. No temporal z variation was imposed. The imposed 
detonation speed required to obtain the stationary solution was u=3.45; nearly identical to the uniform z 
simulation. Contours of z and T are shown in Figure 10(b). Both simulations shown in Figure 10(a) and 
(b) produced identical specific impulse values of 8,112 sec. As with the PDE case, it appears from these 
results that detonation speed is unaffected by non-uniform reactant fraction. 

It is noted that the imposed variation in z of Figure 10(b) is not convected well from the inlet at y=0.0 
to the detonation front. There is significant smoothing of the gradients which is more pronounced the 
longer the particle path. This is partly due to the large degree of shearing that is present between the post-
reactive fluid, and the entering reactant. Mostly however, it is a consequence of numerically convecting 
an interface diagonally on a coarse rectangular grid. Despite this smoothing however, variation in z does 
persist up to the detonation front. Therefore the conclusion of this section holds. 
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Figure 10.—Computed contours of reactant fraction and temperature in 

and ideal RDE with: (a) z=0.5; (b) 0.0<z<1.0 varying sinusoidally. 

6.0 Conclusion 
A numerical investigation has been presented which examines possible causes for the low detonation 

speeds observed in air breathing rotating detonation engine (RDE) experiments. These speeds are 
typically 15 to 40 percent below the speed predicted by one-dimensional Chapman-Jouguet theory. Using 
a simplified two-dimensional computational fluid dynamic simulation of an idealized RDE, it has been 
shown that a reduced effective reaction rate, purportedly caused by turbulence induced reaction zone 
enlargement, produces both the experimentally observed wave speed reduction, and reduced peak 
temperatures (also observed experimentally). Moreover, it has been shown that the wave speed reduction 
is unique to the RDE, and is not seen in the related pulse detonation engine (PDE) environment. This too 
is consistent with experimental observations. Finally, and critically, it has been shown that the reduction 
in wave speed does not alter the predicted performance of idealized RDE’s as measured by gross specific 
impulse. 
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